Condition
Location

41 Leukemia Trials near Greenville, OH

Power is an online platform that helps thousands of Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

This phase II trial studies the side effects and how well blinatumomab and combination chemotherapy or dasatinib, prednisone, and blinatumomab work in treating older patients with acute lymphoblastic leukemia. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as prednisone, vincristine sulfate, methotrexate, and mercaptopurine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab with combination chemotherapy or dasatinib and prednisone may kill more cancer cells.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:65+
Sex:All
53 Participants Needed
This phase III trial studies how well ibrutinib and obinutuzumab with or without venetoclax work in treating patients with chronic lymphocytic leukemia. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Obinutuzumab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib, obinutuzumab, and venetoclax may work better than giving ibrutinib and obinutuzumab in treating patients with chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18 - 69
Sex:All
720 Participants Needed
This phase III trial studies ibrutinib and rituximab to see how well they work compared to fludarabine phosphate, cyclophosphamide, and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. It is not yet known whether fludarabine phosphate, cyclophosphamide, and rituximab may work better than ibrutinib and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18 - 70
Sex:All
529 Participants Needed
This randomized phase III trial studies combination chemotherapy with blinatumomab to see how well it works compared to induction chemotherapy alone in treating patients with newly diagnosed breakpoint cluster region (BCR)-c-abl oncogene 1, non-receptor tyrosine kinase (ABL)-negative B lineage acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective with or without blinatumomab in treating newly diagnosed acute lymphoblastic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:30 - 70
Sex:All
488 Participants Needed
This phase II trial is studying the side effects of giving combination chemotherapy together with or without donor stem cell transplant and to see how well it works in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect).
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:18 - 60
Sex:All
97 Participants Needed
This phase II trial is studying the side effects of giving azacitidine together with gemtuzumab ozogamicin to see how well it works in treating older patients with previously untreated acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as gemtuzumab ozogamicin, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Giving azacitidine together with gemtuzumab ozogamicin may kill more cancer cells.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:60+
Sex:All
133 Participants Needed
This randomized phase II/III trial studies how well azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone work in treating older patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as azacitidine, decitabine, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone may kill more cancer cells.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3
Age:60+
Sex:All
76 Participants Needed
This phase III trial compares adding a new anti-cancer drug (venetoclax) to the usual treatment (ibrutinib plus obinutuzumab) in older patients with chronic lymphocytic leukemia who have not received previous treatment. The addition of venetoclax to the usual treatment might prevent chronic lymphocytic leukemia from returning. This trial also will investigate whether patients who receive ibrutinib plus obinutuzumab plus venetoclax and have no detectable chronic lymphocytic leukemia after 1 year of treatment, can stop taking ibrutinib. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving ibrutinib and obinutuzumab with venetoclax may work better at treating chronic lymphocytic leukemia compared to ibrutinib and obinutuzumab.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:65+
Sex:All
454 Participants Needed
This randomized phase III trial studies rituximab with bendamustine hydrochloride or ibrutinib to see how well they work compared to ibrutinib alone in treating older patients with previously untreated chronic lymphocytic leukemia. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Chemotherapy drugs, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether rituximab with bendamustine hydrochloride may work better than rituximab and ibrutinib or ibrutinib alone in treating chronic lymphocytic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:65+
Sex:All
547 Participants Needed
This randomized phase III trial studies lenalidomide to see how well it works with or without epoetin alfa in treating patients with myelodysplastic syndrome and anemia. Lenalidomide may stop the growth of myelodysplastic syndrome by blocking blood flow to the cells. Colony stimulating factors, such as epoetin alfa, may increase the number of immune cells found in bone marrow or peripheral blood. It is not yet known whether lenalidomide is more effective with or without epoetin alfa in treating patients with myelodysplastic syndrome and anemia.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18+
Sex:All
247 Participants Needed
This randomized phase IIB trial studies imatinib mesylate at two different doses and dasatinib to see how well they work in treating patients with previously untreated chronic phase chronic myelogenous leukemia. Imatinib mesylate or dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:18+
Sex:All
406 Participants Needed
This phase III trial compares early treatment with venetoclax and obinutuzumab versus delayed treatment with venetoclax and obinutuzumab in patients with newly diagnosed high-risk chronic lymphocytic leukemia or small lymphocytic lymphoma. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Immunotherapy with monoclonal antibodies, such as obinutuzumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Starting treatment with the venetoclax and obinutuzumab early (before patients have symptoms) may have better outcomes for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma compared to starting treatment with the venetoclax and obinutuzumab after patients show symptoms.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:18+
Sex:All
247 Participants Needed
This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, to classify patients into post-consolidation treatment groups. On the second part of this study, patients with HR B-ALL will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. The patients that receive inotuzumab will not receive part of delayed intensification. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:1 - 25
Sex:All
4997 Participants Needed
This trial tests how well the drug imatinib works with different chemotherapy treatments for patients with specific types of leukemia. It aims to find out if a less intense chemotherapy regimen can be as effective as a stronger one but with fewer side effects. The study focuses on patients with certain types of acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21
Sex:All
475 Participants Needed
This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31
Sex:All
5949 Participants Needed
This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab may allow the body's immune system to attack and destroy some types of leukemia cells. It is not yet known whether blinatumomab is more effective than standard combination chemotherapy in treating relapsed B-cell acute lymphoblastic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31
Sex:All
669 Participants Needed
This phase II trial tests the safety and best dose of revumenib in combination with chemotherapy, and evaluates whether this treatment improves the outcome in infants and young children who have leukemia that has come back (relapsed) or does not respond to treatment (refractory) and is associated with a KMT2A (MLL) gene rearrangement (KMT2A-R). Leukemia is a cancer of the white blood cells, where too many underdeveloped (abnormal) white blood cells, called "blasts", are found in the bone marrow, which is the soft, spongy center of the bones that produces the three major blood cells: white blood cells to fight infection; red blood cells that carry oxygen; and platelets that help blood clot and stop bleeding. The blasts crowd out the normal blood cells in the bone marrow and spread to the blood. They can also spread to the brain, spinal cord, and/or other organs of the body. The leukemia cells of some children have a genetic change in which a gene (KMT2A) is broken and combined with other genes that typically do not interact with one another; this is called "rearranged". This genetic rearrangement alters how other genes are turned on or off in the cell, turning on genes that drive the development of leukemia. Patients with KMT2A rearrangement have higher risk for cancer coming back after treatment. Revumenib is an oral medicine that directly targets the changes that occur in a cell with a KMT2A rearrangement and has been shown to specifically kill these leukemia cells in preclinical laboratory settings and in animals. Drugs used in chemotherapy, such as vincristine, prednisone, asparaginase, fludarabine and cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial is being done to find out if the combination of revumenib and chemotherapy would be safe and/or effective in treating infants and young children with relapsed or refractory KMT2A-R leukemia.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 6
Sex:All
78 Participants Needed
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 21
Sex:All
80 Participants Needed
This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:All
Sex:All
78 Participants Needed
This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:15 - 40
Sex:All
440 Participants Needed
This phase III trial studies tretinoin and arsenic trioxide in treating patients with newly diagnosed acute promyelocytic leukemia. Standard treatment for acute promyelocytic leukemia involves high doses of a common class of chemotherapy drugs called anthracyclines, which are known to cause long-term side effects, especially to the heart. Tretinoin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Arsenic trioxide may stop the growth of cancer cells by either killing the cells, by stopping them from dividing, or by stopping them from spreading. Completely removing or reducing the amount of anthracycline chemotherapy and giving tretinoin together with arsenic trioxide may be an effective treatment for acute promyelocytic leukemia and may reduce some of the long-term side effects.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:12 - 21
Sex:All
158 Participants Needed
This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 30
Sex:All
847 Participants Needed
This randomized phase III trial studies compliance to a mercaptopurine treatment intervention compared to standard of care in younger patients with acute lymphoblastic leukemia that has had a decrease in or disappearance of signs and symptoms of cancer (remission). Assessing ways to help patients who have acute lymphoblastic leukemia to take their medications as prescribed may help them in taking their medications more consistently and may improve treatment outcomes.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21
Sex:All
570 Participants Needed
This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:< 29
Sex:All
1645 Participants Needed
This phase II trial studies how stopping tyrosine kinase inhibitors will affect treatment-free remission in patients with chronic myeloid leukemia in chronic phase. When the level of disease is very low, it's called molecular remission. TKIs are a type of medication that help keep this level low. However, after being in molecular remission for a specific amount of time, it may not be necessary to take tyrosine kinase inhibitors. It is not yet known whether stopping tyrosine kinase inhibitors will help patients with chronic myeloid leukemia in chronic phase continue or re-achieve molecular remission.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 25
Sex:All
110 Participants Needed
This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 21
Sex:All
171 Participants Needed
This randomized phase III trial is studying different combination chemotherapy regimens and their side effects and comparing how well they work in treating young patients with newly diagnosed T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which combination chemotherapy regimen is more effective in treating T-cell acute lymphoblastic leukemia or T-cell lymphoblastic lymphoma. After a common induction therapy, patients were risk assigned and eligible for one or both post-induction randomizations: Escalating dose Methotrexate versus High Dose Methotrexate in Interim Maintenance therapy, No Nelarabine versus Nelarabine in Consolidation therapy. T-ALL patients are risk assigned as Low Risk, Intermediate Risk or High Risk. Low Risk patients are not eligible for the Nelarabine randomization, Patients with CNS disease at diagnosis were assgined to receive High Dose Methotrexate, patients who failed induction therapy were assigned to receive Nelarabine and High Dose Methotrexate. T-LLy patients were all assigned to escalating dose Methotrexate and were risk assigned as Standard Risk, High Risk and induction failures. Standard risk patients did not receive nelarabine, High risk T-LLy patients were randomized to No Nelarabine versus Nelarabine, and Induction failures were assigned to receive Nelarabine.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 30
Sex:All
1895 Participants Needed
This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:< 21
Sex:All
1186 Participants Needed
This phase III trial studies how well blinatumomab works in combination with chemotherapy in treating patients with newly diagnosed, standard risk B-lymphoblastic leukemia or B-lymphoblastic lymphoma with or without Down syndrome. Monoclonal antibodies, such as blinatumomab, may induce changes in the body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as vincristine, dexamethasone, prednisone, prednisolone, pegaspargase, methotrexate, cytarabine, mercaptopurine, doxorubicin, cyclophosphamide, and thioguanine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Leucovorin decreases the toxic effects of methotrexate. Giving monoclonal antibody therapy with chemotherapy may kill more cancer cells. Giving blinatumomab and combination chemotherapy may work better than combination chemotherapy alone in treating patients with B-ALL. This trial also assigns patients into different chemotherapy treatment regimens based on risk (the chance of cancer returning after treatment). Treating patients with chemotherapy based on risk may help doctors decide which patients can best benefit from which chemotherapy treatment regimens.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:365 - 31
Sex:All
6720 Participants Needed
This phase II trial studies how well trametinib works in treating patients with juvenile myelomonocytic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 21
Sex:All
10 Participants Needed
Page 1 of 2+

Frequently Asked Questions

How much do Leukemia clinical trials in Greenville, OH pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Leukemia clinical trials in Greenville, OH work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Leukemia trials in Greenville, OH 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Greenville, OH for Leukemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Greenville, OH several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Leukemia medical study in Greenville, OH ?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Leukemia clinical trials in Greenville, OH ?

Most recently, we added Revumenib + Chemotherapy for Relapsed/Refractory Leukemia, Levocarnitine for Chemotherapy-Related Liver Protection in Leukemia and Lymphoma and Venetoclax + ASTX727 for Chronic Myelomonocytic Leukemia to the Power online platform.