Condition
Location

116 Leukemia Trials near Thomasville, GA

Power is an online platform that helps thousands of Leukemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

The study is designed to compare the tolerability of asciminib versus nilotinib for the treatment of newly diagnosed, previously untreated patients with Positive Chronic Myelogenous Leukemia in Chronic Phase (Ph+ CML-CP).
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18 - 100
Sex:All
568 Participants Needed
The purpose of this study is to compare the efficacy and safety of fixed duration pirtobruitinib (LOXO-305) with VR (Arm A) compared to VR alone (Arm B) in patients with CLL/SLL who have been previously treated with at least one prior line of therapy. Participation could last up to five years.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18+
Sex:All
600 Participants Needed
This trial is testing a new drug called asciminib against other existing treatments for adults newly diagnosed with a specific type of leukemia. The goal is to see if asciminib is more effective at blocking a protein that helps cancer cells grow. Asciminib has shown superior efficacy in patients with chronic myeloid leukemia (CML) previously treated with multiple other treatments.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18 - 100
Sex:All
406 Participants Needed
This Primary objective is evaluating the efficacy of obinutuzumab in combination with chlorambucil (Arm A) compared with acalabrutinib in combination with obinutuzumab (Arm B) for the treatment of previously untreated chronic lymphocytic leukemia (CLL). Secondary objectives: 1) To evaluate the efficacy of obinutuzumab in combination with chlorambucil (Arm A) versus acalabrutinib monotherapy (Arm C) based on IRC assessment of PFS per IWCLL 2008 criteria. 2)To compare obinutuzumab plus chlorambucil (Arm A) versus acalabrutinib plus obinutuzumab (Arm B) and obinutuzumab plus chlorambucil (Arm A) versus acalabrutinib monotherapy (Arm C) in terms of: IRC-assessed objective response rate (ORR); Tine to next treatment (TTNT); Overall Survival (OS)
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18+
Sex:All
535 Participants Needed
This phase III trial studies ibrutinib and rituximab to see how well they work compared to fludarabine phosphate, cyclophosphamide, and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as fludarabine phosphate and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. It is not yet known whether fludarabine phosphate, cyclophosphamide, and rituximab may work better than ibrutinib and rituximab in treating patients with untreated chronic lymphocytic leukemia or small lymphocytic lymphoma.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:18 - 70
Sex:All
529 Participants Needed
The purpose of this study is to evaluate the efficacy and safety of ibrutinib + venetoclax (I+V) and ibrutinib monotherapy regimens in which dosing of ibrutinib is either proactively reduced or reactively modified in response to adverse events (AEs).
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:18+
Sex:All
320 Participants Needed
This trial is testing whether Lactobacillus plantarum, a beneficial bacteria found in foods like yogurt, can prevent a serious gut complication called acute graft versus host disease in young patients receiving stem cell transplants. The bacteria may help by keeping the gut healthy and reducing inflammation. Lactobacillus plantarum has been used in human studies to promote beneficial effects in the immune system, alleviate intestinal disorders, and reduce the risk of cardiovascular disease. The study will compare patients taking Lactobacillus plantarum to those not taking it.
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:2 - 25
Sex:All
173 Participants Needed
This trial tests how well the drug imatinib works with different chemotherapy treatments for patients with specific types of leukemia. It aims to find out if a less intense chemotherapy regimen can be as effective as a stronger one but with fewer side effects. The study focuses on patients with certain types of acute lymphoblastic leukemia.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21
Sex:All
475 Participants Needed
This randomized phase III trial studies how well combination chemotherapy works in treating young patients with newly diagnosed B acute lymphoblastic leukemia that is likely to come back or spread, and in patients with Philadelphia chromosome (Ph)-like tyrosine kinase inhibitor (TKI) sensitive mutations. Chemotherapy drugs, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) and giving the drugs in different doses and in different combinations may kill more cancer cells.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31
Sex:All
5949 Participants Needed
This phase III trial compares the effect of adding levocarnitine to standard chemotherapy versus (vs.) standard chemotherapy alone in protecting the liver in patients with leukemia or lymphoma. Asparaginase is part of the standard of care chemotherapy for the treatment of acute lymphoblastic leukemia (ALL), lymphoblastic lymphoma (LL), and mixed phenotype acute leukemia (MPAL). However, in adolescent and young adults (AYA) ages 15-39 years, liver toxicity from asparaginase is common and often prevents delivery of planned chemotherapy, thereby potentially compromising outcomes. Some groups of people may also be at higher risk for liver damage due to the presence of fat in the liver even before starting chemotherapy. Patients who are of Japanese descent, Native Hawaiian, Hispanic or Latinx may be at greater risk for liver damage from chemotherapy for this reason. Carnitine is a naturally occurring nutrient that is part of a typical diet and is also made by the body. Carnitine is necessary for metabolism and its deficiency or absence is associated with liver and other organ damage. Levocarnitine is a drug used to provide extra carnitine. Laboratory and real-world usage of the dietary supplement levocarnitine suggests its potential to prevent or reduce liver toxicity from asparaginase. The overall goal of this study is to determine whether adding levocarnitine to standard of care chemotherapy will reduce the chance of developing severe liver damage from asparaginase chemotherapy in ALL, LL and/or MPAL patients.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:15 - 40
Sex:All
440 Participants Needed
This phase III trial studies whether inotuzumab ozogamicin added to post-induction chemotherapy for patients with High-Risk B-cell Acute Lymphoblastic Leukemia (B-ALL) improves outcomes. This trial also studies the outcomes of patients with mixed phenotype acute leukemia (MPAL), and B-lymphoblastic lymphoma (B-LLy) when treated with ALL therapy without inotuzumab ozogamicin. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a type of chemotherapy called calicheamicin. Inotuzumab attaches to cancer cells in a targeted way and delivers calicheamicin to kill them. Other drugs used in the chemotherapy regimen, such as cyclophosphamide, cytarabine, dexamethasone, doxorubicin, daunorubicin, methotrexate, leucovorin, mercaptopurine, prednisone, thioguanine, vincristine, and pegaspargase or calaspargase pegol work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial will also study the outcomes of patients with mixed phenotype acute leukemia (MPAL) and disseminated B lymphoblastic lymphoma (B-LLy) when treated with high-risk ALL chemotherapy. The overall goal of this study is to understand if adding inotuzumab ozogamicin to standard of care chemotherapy maintains or improves outcomes in High Risk B-cell Acute Lymphoblastic Leukemia (HR B-ALL). The first part of the study includes the first two phases of therapy: Induction and Consolidation. This part will collect information on the leukemia, as well as the effects of the initial treatment, to classify patients into post-consolidation treatment groups. On the second part of this study, patients with HR B-ALL will receive the remainder of the chemotherapy cycles (interim maintenance I, delayed intensification, interim maintenance II, maintenance), with some patients randomized to receive inotuzumab. The patients that receive inotuzumab will not receive part of delayed intensification. Other aims of this study include investigating whether treating both males and females with the same duration of chemotherapy maintains outcomes for males who have previously been treated for an additional year compared to girls, as well as to evaluate the best ways to help patients adhere to oral chemotherapy regimens. Finally, this study will be the first to track the outcomes of subjects with disseminated B-cell Lymphoblastic Leukemia (B-LLy) or Mixed Phenotype Acute Leukemia (MPAL) when treated with B-ALL chemotherapy.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:1 - 25
Sex:All
4997 Participants Needed
This randomized phase III trial studies how well blinatumomab works compared with standard combination chemotherapy in treating patients with B-cell acute lymphoblastic leukemia that has returned after a period of improvement (relapsed). Immunotherapy with blinatumomab may allow the body's immune system to attack and destroy some types of leukemia cells. It is not yet known whether blinatumomab is more effective than standard combination chemotherapy in treating relapsed B-cell acute lymphoblastic leukemia.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 31
Sex:All
669 Participants Needed
This phase II trial studies how well inotuzumab ozogamicin works in treating younger patients with B-lymphoblastic lymphoma or CD22 positive B acute lymphoblastic leukemia that has come back (relapsed) or does not respond to treatment (refractory). Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called ozogamicin. Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers ozogamicin to kill them.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 21
Sex:All
80 Participants Needed
This phase II trial tests the safety and best dose of revumenib in combination with chemotherapy, and evaluates whether this treatment improves the outcome in infants and young children who have leukemia that has come back (relapsed) or does not respond to treatment (refractory) and is associated with a KMT2A (MLL) gene rearrangement (KMT2A-R). Leukemia is a cancer of the white blood cells, where too many underdeveloped (abnormal) white blood cells, called "blasts", are found in the bone marrow, which is the soft, spongy center of the bones that produces the three major blood cells: white blood cells to fight infection; red blood cells that carry oxygen; and platelets that help blood clot and stop bleeding. The blasts crowd out the normal blood cells in the bone marrow and spread to the blood. They can also spread to the brain, spinal cord, and/or other organs of the body. The leukemia cells of some children have a genetic change in which a gene (KMT2A) is broken and combined with other genes that typically do not interact with one another; this is called "rearranged". This genetic rearrangement alters how other genes are turned on or off in the cell, turning on genes that drive the development of leukemia. Patients with KMT2A rearrangement have higher risk for cancer coming back after treatment. Revumenib is an oral medicine that directly targets the changes that occur in a cell with a KMT2A rearrangement and has been shown to specifically kill these leukemia cells in preclinical laboratory settings and in animals. Drugs used in chemotherapy, such as vincristine, prednisone, asparaginase, fludarabine and cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This trial is being done to find out if the combination of revumenib and chemotherapy would be safe and/or effective in treating infants and young children with relapsed or refractory KMT2A-R leukemia.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 6
Sex:All
78 Participants Needed
This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:< 22
Sex:All
960 Participants Needed
This phase III trial compares hematopoietic (stem) cell transplantation (HCT) using mismatched related donors (haploidentical \[haplo\]) versus matched unrelated donors (MUD) in treating children, adolescents, and young adults with acute leukemia or myelodysplastic syndrome (MDS). HCT is considered standard of care treatment for patients with high-risk acute leukemia and MDS. In HCT, patients are given very high doses of chemotherapy and/or radiation therapy, which is intended to kill cancer cells that may be resistant to more standard doses of chemotherapy; unfortunately, this also destroys the normal cells in the bone marrow, including stem cells. After the treatment, patients must have a healthy supply of stem cells reintroduced or transplanted. The transplanted cells then reestablish the blood cell production process in the bone marrow. The healthy stem cells may come from the blood or bone marrow of a related or unrelated donor. If patients do not have a matched related donor, doctors do not know what the next best donor choice is. This trial may help researchers understand whether a haplo related donor or a MUD HCT for children with acute leukemia or MDS is better or if there is no difference at all.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:6 - 21
Sex:All
435 Participants Needed
This pilot phase II trial studies the side effects of azacitidine and combination chemotherapy in infants with acute lymphoblastic leukemia and KMT2A gene rearrangement. Drugs used in chemotherapy, such as methotrexate, prednisolone, daunorubicin hydrochloride, cytarabine, dexamethasone, vincristine sulfate, pegaspargase, hydrocortisone sodium succinate, azacitidine, cyclophosphamide, mercaptopurine, leucovorin calcium, and thioguanine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug may kill more cancer cells.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:All
Sex:All
78 Participants Needed
Phase III, multicenter, randomized study with two arms (1:1 ratio) enrolling patients with AML relapsed/refractory after 2, 3, or 4 prior induction regimens: Experimental arm: DFP-10917 14-day continuous intravenous (IV) infusion at a dose of 6 mg/m²/day followed by a 14-day resting period per 28-day cycles. Control arm: Non-Intensive Reinduction (LoDAC, Azacitidine, Decitabine, Venetoclax Combination Regimens) or Intensive Reinduction (High and Intermediate Dose Cytarabine Regimens), depending on the patient's prior induction treatment.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:18+
Sex:All
450 Participants Needed
Chronic lymphocytic leukemia (CLL) is the most common leukemia (cancer of blood cells). The purpose of this study is to assess the safety of venetoclax in combination with obinutuzumab or acalabrutinib in the treatment of CLL. Adverse events and change in disease activity will be assessed. Venetoclax in combination with obinutuzumab or acalabrutinib is being investigated in the treatment of CLL. Study doctors put the participants in 1 of 4 groups, called treatment arms. Participants will receive oral venetoclax in combination with intravenously (IV) infused obinutuzumab or oral acalabrutinib at in different dosing schemes as part of treatment. Approximately 120 adult participants with CLL who are being treated with venetoclax will be enrolled in the study in approximately 80 sites worldwide. Participants in Arm A will receive oral venetoclax in combination with IV infused obinutuzumab, with a 5 week venetoclax ramp up. Participants in Arm B will receive oral venetoclax in combination with oral acalabrutinib, with a 5 week venetoclax ramp up. Participants in Arm C and Arm D will receive oral venetoclax in combination with oral acalabrutinib, with differing venetoclax ramp up periods. The total study duration is approximately 28 months. There may be higher treatment burden for participants in this trial compared to their standard of care. Participants will attend regular visits during the study at a hospital or clinic. The effect of the treatment will be checked by medical assessments, blood tests, checking for side effects and completing questionnaires.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:18+
Sex:All
120 Participants Needed
This randomized phase III trial compares how well combination chemotherapy works when given with or without bortezomib in treating patients with newly diagnosed T-cell acute lymphoblastic leukemia or stage II-IV T-cell lymphoblastic lymphoma. Bortezomib may help reduce the number of leukemia or lymphoma cells by blocking some of the enzymes needed for cell growth. It may also help chemotherapy work better by making cancer cells more sensitive to the drugs. It is not yet known if giving standard chemotherapy with or without bortezomib is more effective in treating newly diagnosed T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 30
Sex:All
847 Participants Needed
This randomized phase III trial studies compliance to a mercaptopurine treatment intervention compared to standard of care in younger patients with acute lymphoblastic leukemia that has had a decrease in or disappearance of signs and symptoms of cancer (remission). Assessing ways to help patients who have acute lymphoblastic leukemia to take their medications as prescribed may help them in taking their medications more consistently and may improve treatment outcomes.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:1 - 21
Sex:All
570 Participants Needed
This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Age:< 29
Sex:All
1645 Participants Needed
Image of trial facility.

Orca-Q for Pediatric Leukemia

Gainesville, Florida
This is a first in children prospective study of allogeneic hematopoietic cell transplant using a centrally manufactured engineered donor graft (Orca-Q). The study will assess safety and efficacy of Orca-Q in pediatric patients with hematologic malignancies.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:< 50
Sex:All
40 Participants Needed
This trial tests bosutinib, a daily oral medication, in children with a type of leukemia. It aims to find a safe dose and see how well it works in those newly diagnosed or who haven't responded to other treatments. Bosutinib helps by blocking proteins that cancer cells need to grow. Bosutinib is a type of medication used for treating leukemia, especially in cases not responding to other treatments.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:1 - 17
Sex:All
60 Participants Needed
This phase II trial studies how stopping tyrosine kinase inhibitors will affect treatment-free remission in patients with chronic myeloid leukemia in chronic phase. When the level of disease is very low, it's called molecular remission. TKIs are a type of medication that help keep this level low. However, after being in molecular remission for a specific amount of time, it may not be necessary to take tyrosine kinase inhibitors. It is not yet known whether stopping tyrosine kinase inhibitors will help patients with chronic myeloid leukemia in chronic phase continue or re-achieve molecular remission.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 25
Sex:All
110 Participants Needed
This study will evaluate the use of non- TBI (total body irradiation) conditioning for B-ALL patients with low risk of relapse as defined by absence of NGS-MRD (next generation sequencing minimal residual disease) before receiving a hematopoietic cell transplant (HCT). Patients diagnosed with B-ALL who are candidates for HCT will be screened by NGS-MRD on a test of bone marrow done before the HCT. Subjects who are pre-HCT NGS-MRD negative will be eligible to receive a non-TBI conditioning regimen as part of the treatment cohort of the study. Subjects who are pre-HCT NGS-MRD positive will be treated as per treating center standard and will be followed in an observational cohort (HCT center standard of care).
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:1 - 25
Sex:All
95 Participants Needed
This is a nonrandomized study of ruxolitinib in combination with a standard multi-agent chemotherapy regimen for the treatment of B-cell acute lymphoblastic leukemia. Part 1 of the study will optimize the dose of study drug (ruxolitinib) in combination with the chemotherapy regimen. Part 2 will evaluate the efficacy of combination chemotherapy and ruxolitinib at the recommended dose determined in Part 1.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 21
Sex:All
171 Participants Needed
This phase II trial is studying the side effects of giving combination chemotherapy together with or without donor stem cell transplant and to see how well it works in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect).
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:18 - 60
Sex:All
97 Participants Needed
This phase II trial studies the side effects of enasidenib and sees how well it works in treating pediatric patients with acute myeloid leukemia that has come back after treatment (relapsed) or has been difficult to treat with chemotherapy (refractory). Patients must also have a specific genetic change, also called a mutation, in a protein called IDH2. Enasidenib may stop the growth of cancer cells by blocking the mutated IDH2 protein, which is needed for leukemia cell growth.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:24 - 21
Sex:All
10 Participants Needed
This randomized phase II/III trial studies how well azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone work in treating older patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Drugs used in chemotherapy, such as azacitidine, decitabine, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Midostaurin may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine with or without nivolumab or midostaurin, or decitabine and cytarabine alone may kill more cancer cells.
No Placebo Group
Prior Safety Data
Pivotal Trial
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3
Age:60+
Sex:All
76 Participants Needed
Page 1 of 4+

Frequently Asked Questions

How much do Leukemia clinical trials in Thomasville, GA pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Leukemia clinical trials in Thomasville, GA work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Leukemia trials in Thomasville, GA 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Thomasville, GA for Leukemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Thomasville, GA several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Leukemia medical study in Thomasville, GA ?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Leukemia clinical trials in Thomasville, GA ?

Most recently, we added Cladribine + Cytarabine vs. HMA + Venetoclax for Acute Myeloid Leukemia, Pirtobrutinib for Chronic Lymphocytic Leukemia and Medication Adherence Programs for ALL to the Power online platform.