Condition
Location

53 Aplastic Anemia Trials

Power is an online platform that helps thousands of Aplastic Anemia patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Severe Aplastic Anemia (SAA) is a rare condition in which the body stops producing enough new blood cells. SAA can be cured with immune suppressive therapy or a bone marrow transplant. Regular treatment for patients with aplastic anemia who have a matched sibling (brother or sister), or family donor is a bone marrow transplant. Patients without a matched family donor normally are treated with immune suppressive therapy (IST). Match unrelated donor (URD) bone marrow transplant (BMT) is used as a secondary treatment in patients who did not get better with IST, had their disease come back, or a new worse disease replaced it (like leukemia). This trial will compare time from randomization to failure of treatment or death from any cause of IST versus URD BMT when used as initial therapy to treat SAA. The trial will also assess whether health-related quality of life and early markers of fertility differ between those randomized to URD BMT or IST, as well as assess the presence of marrow failure-related genes and presence of gene mutations associated with MDS or leukemia and the change in gene signatures after treatment in both study arms. This study treatment does not include any investigational drugs. The medicines and procedures in this study are standard for treatment of SAA.
No Placebo Group
Pivotal Trial
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 3
Age:0 - 25
Sex:All
234 Participants Needed
The purpose of this study is to determine if a search strategy of searching for an HLA-matched unrelated donor for allogeneic transplantation if possible then an alternative donor if an HLA-matched unrelated donor is not available versus proceeding directly to an alternative donor transplant will result in better survival for allogeneic transplant recipients within 2 years after study enrollment.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:All
Sex:All
1753 Participants Needed
This clinical trial tests whether a geriatric optimization plan (GO!) works to improve survival in patients over 60 with a hematologic malignancy or bone marrow failure syndrome eligible for allogeneic hematopoietic cell transplant. GO! focuses on creating a tailored and specific plan for each patient to make changes in their daily lives. These may include changes to their diet, sleep, activity, medicines, or even referrals to other providers depending on the patient's needs. Studying survival and quality of life in patients over 60 receiving an allogeneic hematopoietic cell transplant may help identify the effects of treatment.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:60+
Sex:All
30 Participants Needed
The purpose of this study is to determine whether the use of lower doses of busulfan and the elimination of cyclosporine will further reduce transplant-related side effects for patients with Fanconi Anemia (FA). Patients will undergo a transplant utilizing mis-matched related or matched unrelated donors following a preparative regimen of busulfan, fludarabine, anti-thymocyte globulin and cyclophosphamide.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:3+
Sex:All
70 Participants Needed
The purpose of this study is to find out whether upfront emapalumab treatment can help in sAA (Aplastic Anemia) treatment planning and increase the effectiveness of standard treatment options.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:0 - 25
Sex:All
55 Participants Needed
This trial tests a new bone marrow transplant method for patients with Dyskeratosis congenita. It uses fludarabine and antibodies to avoid harmful side effects, aiming to improve survival and reduce complications. Fludarabine-based regimens have been shown to be effective and feasible in reducing transplant-related morbidity in patients with Dyskeratosis congenita.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:30 - 65
Sex:All
40 Participants Needed
This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:6 - 26
Sex:All
68 Participants Needed
This is a phase II, open label, multi-center, intra-patient dose escalation study to characterize the pharmacokinetics (PK) after oral administration of eltrombopag in combination with immunosuppressive therapy in pediatric patients with previously untreated or relapsed/refractory severe aplastic anemia or recurrent aplastic anemia.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:1 - 18
Sex:All
51 Participants Needed
This trial will see if extended abatacept administration (combined with a standard regimen of tacrolimus and mycophenolate mofetil) will prevent acute and chronic graft-versus-host disease (GVHD) in children and adolescents receiving unrelated donor (URD) hematopoietic stem cell transplantation (HSCT), without compromising their engraftment or reconstitution of protective immunity to infection. The study will enroll 30 pediatric patients with serious non-malignant hematologic diseases (NMHD) undergoing URD HSCT. The trial will include patients with 7/8 donors and those with 8/8 (matched) donors. All participants will receive 8 doses of abatacept. Recruitment is expected to last for about 2 years and participants will be followed for up to 3 years.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:< 20
Sex:All
30 Participants Needed
This phase Ib/2 trial studies how well chemotherapy, total body irradiation, and post-transplant cyclophosphamide work in reducing rates of graft versus host disease in patients with hematologic malignancies undergoing a donor stem cell transplant. Drugs used in the chemotherapy, such as fludarabine phosphate and melphalan hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft versus host disease). Giving cyclophosphamide after the transplant may stop this from happening.
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:18 - 79
Sex:All
35 Participants Needed
Background: Immune bone marrow failure is a condition that occurs when a person s immune system attacks the cells of the bone marrow. This can lead to diseases including different types of anemias and blood cancers. Some of these diseases can be deadly. Better treatments are needed. Objective: To test a drug (ruxolitinib) in people with different types of immune bone marrow failure. Eligibility: Adults aged 18 and older with an immune bone marrow failure. Design: Participants will be screened. They will have a physical exam. They will give samples of blood and saliva. They will have a bone marrow biopsy: A large needle will be inserted into a small cut to remove a sample of the soft tissue inside the bone. Some participants may have a skin biopsy: A small piece of skin will be removed. Some may have a computed tomography (CT) scan: They will lie on a table that slides into a donut-shaped machine that uses X-rays to make pictures of the inside of the body. Ruxolitinib is a tablet taken by mouth. Participants will take the drug twice a day for up to 6 months. Participants will have blood tests every week while they are taking the drug. These tests can be done by the participant s own physician and the results sent to the researchers. Participants will have clinic visits after taking the drug for 3 months and 6 months and then after 1, 2, and 3 years. The blood tests and bone marrow biopsy will be repeated. Participants who improve while taking the drugs may go on to an extension phase of the study.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:18 - 99
Sex:All
145 Participants Needed
Background: Severe aplastic anemia (SAA) is a rare and serious blood disorder. It causes the immune system to turn against bone marrow cells. Standard treatment for SSA is a combination of 3 drugs (Cyclosporine \[CsA\], Eltrombopag \[EPAG\], and horse anti-thymocyte globulin \[h-ATG\]). Researchers want to see if starting people at a lower dose of CsA with EPAG before giving them h-ATG is helpful. Objective: To learn if early initiation of oral therapy with CsA and EPAG is safe and effective in people who have SAA and have not been treated with a course of immunosuppressive therapy and EPAG. Eligibility: People ages 3 and older with SAA Design: Participants will be screened with: medical history physical exam electrocardiogram blood tests family history bone marrow biopsy current medicines. Participants may be screened remotely via telephone conference. Participants will take a lower oral dose of CsA and EPAG. They will take CsA twice a day for 6 months. They will take EPAG for 6 months. Those who cannot visit the NIH Clinical Center within 72 hours will start taking the drugs at home. They will have weekly telephone calls with NIH staff until they visit the Clinical Center. Participants may get h-ATG at the Clinical Center for 4 days. For this, they will have a central line placed. It is a plastic tube inserted into a neck, chest, or arm vein. Participants will repeat most screening tests throughout the study. Participants will have follow-up visits at the Clinical Center at 3 months, 6 months, and annually for 5 years after the start of the study....
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:3 - 99
Sex:All
80 Participants Needed
Background: Severe aplastic anemia (SAA), and myelodysplastic syndrome (MDS), and paroxysmal nocturnal hemoglobinuria (PNH) cause serious blood problems. Stem cell transplants using bone marrow or blood plus chemotherapy can help. Researchers want to see if using peripheral blood stem cells (PBSCs) rather than bone marrow cells works too. PBSCs are easier to collect and have more cells that help transplants. Objectives: To see how safely and effectively SAA, MDS and PNH are treated using peripheral blood hematopoietic stem cells from a family member plus chemotherapy. Eligibility: Recipients ages 4-60 with SAA, MDS or PNH and their relative donors ages 4-75 Design: Recipients will have: * Blood, urine, heart, and lung tests * Scans * Bone marrow sample Recipients will need a caregiver for several months. They may make fertility plans and a power of attorney. Donors will have blood and tissue tests, then injections to boost stem cells for 5-7 days. Donors will have blood collected from a tube in an arm or leg vein. A machine will separate stem cells and maybe white blood cells. The rest of the blood will be returned into the other arm or leg. In the hospital for about 1 month, recipients will have: * Central line inserted in the neck or chest * Medicines for side effects * Chemotherapy over 8 days and radiation 1 time * Stem cell transplant over 4 hours Up to 6 months after transplant, recipients will stay near NIH for weekly physical exams and blood tests. At day 180, recipients will go home. They will have tests at their doctor s office and NIH several times over 5 years.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:4 - 75
Sex:All
56 Participants Needed
Background: Severe aplastic anemia (SAA) and myelodysplastic syndrome (MDS) are bone marrow diseases. People with these diseases usually need a bone marrow transplant. Researchers are testing ways to make stem cell transplant safer and more effective. Objective: To test if treating people with SAA or MDS with a co-infusion of blood stem cells from a family member and cord blood stem cells from an unrelated donor is safe and effective. Eligibility: Recipients ages 4-60 with SAA or MDS Donors ages 4-75 Design: Recipients will be screened with: * Blood, lung, and heart tests * Bone marrow biopsy * CT scan Recipients will have an IV line placed into a vein in the neck. Starting 11 days before the transplant they will have several chemotherapy infusions and 1 30-minute radiation dose. Recipients will get the donor cells through the IV line. They will stay in the hospital 3-4 weeks. After discharge, they will have visits: * First 3-4 months: 1-2 times weekly * Then every 6 months for 5 years Donors will be screened with: * Physical exam * Medical history * Blood tests Donors veins will be checked for suitability for stem cell collection. They may need an IV line to be placed in a thigh vein. Donors will get Filgrastim or biosimilar (G-CSF) injections daily for 5-7 days. On the last day, they will have apheresis: Blood drawn from one arm or leg runs through a machine and into the other arm or leg. This may be repeated 2 days or 2-4 weeks later.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:4 - 75
Sex:All
37 Participants Needed
Background: People with severe aplastic anemia (SAA) do not make enough red and white blood cells, and/or platelets. Their body's immune system stops the bone marrow from making these cells. The treatment cyclosporine leads to better blood counts. But when this treatment is stopped, the disease may return in 1 in 3 people. The drug sirolimus may help by suppressing the immune system. Objective: To evaluate and compare the usefulness of sirolimus in preventing aplastic anemia from returning after cyclosporine is stopped, compared with stopping cyclosporine alone. Eligibility: People ages 2 and older with SAA who: Have responded to immunosuppressive therapy that includes cyclosporine, and continue to take cyclosporine Are not taking drugs with hematologic effects Design: Participants will be screened with: Medical history Physical exam Blood and urine tests Bone marrow biopsy: The area above the hipbone will be numbed. A thin needle will remove some bone marrow. Participants will be randomly assigned to a group. All will stop cyclosporine. Group 1 will take sirolimus by mouth at the same time each day for 3 months with close monitoring. Group 2 will not receive the study drug but will be monitored closely. Participants will have clinical tests for the first 3 months: Weekly blood test Monthly fasting blood test For group 1, measurements of sirolimus in the blood every 1 2 weeks Participants will have clinic visits at 3 months, 12 months, and annually for 5 years after the study starts. They may have another visit if their SAA returns. These will include: Blood and urine tests Bone marrow biopsy
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:2 - 99
Sex:All
83 Participants Needed
Background: * Severe aplastic anemia is a rare and serious blood disorder. It happens when the immune system starts to attack the bone marrow cells. This causes the bone marrow to stop making red blood cells, platelets, and white blood cells. Standard treatment for this disease is horse-ATG and cyclosporine, which suppress the immune system and stop it from attacking the bone marrow. However, this treatment does not work in all people. Some people still have poor blood cell counts even after treatment. * Eltrombopag is a drug designed to mimic a protein in the body called thrombopoietin. It helps the body to make more platelets. It may also cause the body to make more red and white blood cells. Studies have shown that eltrombopag may be useful when added to standard treatment for severe aplastic anemia. It may help improve poor blood cell counts. Objectives: - To test the safety and effectiveness of adding eltrombopag to standard immunosuppressive therapy for severe aplastic anemia. Eligibility: - Individuals at least 2 years of age who have severe aplastic anemia that has not yet been treated. Design: * Participants will be screened with a physical exam, medical history, and blood tests. Blood and urine samples will be collected. * Participants will start treatment with horse-ATG and cyclosporine. Treatment will be given according to the standard of care for the disease. * Cohort 1: After 14 days, participants will start taking eltrombopag. They will take eltrombopag for up to 6 months. * Cohort 2: After 14 days, participants will start taking eltrombopag. They will take eltrombopag for up to 3 months. * Cohort 3 and Extension Cohort: Participants will start taking eltrombopag on Day 1. They will take eltrombopag for up to 6 months. * Participants may receive other medications to prevent infections during treatment. * Treatment will be monitored with frequent blood tests. Participants will also fill out questionnaires about their symptoms and their quality of life.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:2 - 95
Sex:All
207 Participants Needed
Background: * Stem cell transplants from related donors (allogenic stem cell transplants) can be used to treat individuals with certain kinds of severe blood diseases or cancers, such as severe anemia. Allogenic stem cell transplants encourage the growth of new bone marrow to replace that of the recipient. Because stem cell transplants can have serious complications, researchers are interested in developing new approaches to stem cell transplants that will reduce the likelihood of these complications. * By reducing the number of white blood cells included in the blood taken during the stem cell collection process, and replacing them with a smaller amount of white blood cells collected prior to stem cell donation, the stem cell transplant may be less likely to cause severe complications for the recipient. Researchers are investigating whether altering the stem cell transplant donation procedure in this manner will improve the likelihood of a successful stem cell transplant with fewer complications. Objectives: - To evaluate a new method of stem cell transplantation that may reduce the possibly of severe side effects or transplant rejection in the recipient. Eligibility: * Recipient: Individuals between 4 and 80 years of age who have been diagnosed with a blood disease that can be treated with allogenic stem cell transplants. * Donor: Individuals between 4 and 80 years of age who are related to the recipient and are eligible to donate blood. OR unrelated donors found through the National Marrow Donor Program. Design: * All participants will be screened with a physical examination and medical history. * DONORS: * Donors will undergo an initial apheresis procedure to donate white blood cells. * After the initial donation, donors will receive injections of filgrastim to release bone marrow cells into the blood. * After 5 days of filgrastim injections, donors will have apheresis again to donate stem cells that are present in the blood. * RECIPIENTS: * Recipients will provide an initial donation of white blood cells to be used for research purposes only. * From 7 days before the stem cell transplant, participants will be admitted to the inpatient unit of the National Institutes of Health Clinical Center and will receive regular doses of cyclophosphamide, fludarabine, and anti-thymocyte globulin to suppress their immune system and prepare for the transplant. * After the initial chemotherapy, participants will receive the donated white blood cells and stem cells as a single infusion. * After the stem cell and white blood cell transplant, participants will have regular doses of cyclosporine and methotrexate to prevent rejection of the donor cells. Participants will have three doses of methotrexate within the week after the transplant, but will continue to take cyclosporine for up to 4 months after the transplant. * Participants will remain in inpatient care for up to 1 month after the transplant, and will be followed with regular visits for up to 3 years with periodic visits thereafter to evaluate the success of the transplant and any side effects.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:4 - 80
Sex:All
120 Participants Needed
Background: * Moderate aplastic anemia is a blood disease which may require frequent blood and platelet transfusions. Sometimes patients with this disease can be treated with immunosuppressive drugs. Not all patients respond and not all patients are suitable for this treatment. * Thrombopoietin (TPO) is a protein made by the body. The bone marrow needs TPO to produce platelets. TPO may also be able to stimulate bone marrow stem cells to produce red cells and white cells. However, TPO cannot be given by mouth. This has led researchers to develop the drug eltrombopag, which acts in the same way and can be given by mouth. Eltrombopag has been shown to safely increase platelet numbers in healthy volunteers and in patients with other chronic blood diseases, including severe aplastic anemia. Researchers are interested in looking at whether eltrombopag can be given to people with moderate aplastic anemia and significantly low blood cell counts. Objectives: - To evaluate the safety and effectiveness of eltrombopag in people with moderate aplastic anemia or patients with bone marrow failure and unilineage cytopenia who need treatment for significantly low blood cell counts. Eligibility: - People at least 2 years of age who have moderate aplastic anemia or bone marrow failure and unilineage cytopenia,and significantly low blood cell counts. Design: * Patients will be screened with a physical examination, medical history, blood tests, a bone marrow biopsy, and an eye exam. * Patients will receive eltrombopag by mouth once a day. * Patients will have weekly blood tests to monitor the effectiveness of the treatment and adjust the dose in response to possible side effects. * Patients may continue to take eltrombopag if their platelet count or hemoglobin increases, their requirement for platelet or blood transfusion decreases after 16 to 20 weeks of treatment, and there have been no serious side effects. Access to the drug will continue until the study is closed. Patients will be asked to return for a follow-up visit 6 months after the last dose of medication.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:2 - 100
Sex:All
34 Participants Needed
Background: - Cord blood is blood that is taken from the umbilical cord and placenta of healthy newborns after childbirth. The cord blood collected from a baby is called a cord blood unit. Cord blood units are stored frozen in public cord blood banks. About 10,000 cord blood transplants have been performed in children and adults for blood cancers and other diseases in the world. These transplants have helped save lives and improve treatments. However, not all available units of cord blood have been collected, stored, and licensed according to specific government requirements. These unlicensed units can still be used in transplant, but they can only be given as part of specific research studies. This study will evaluate the safety of giving these unlicensed units by recording any problems that may occur during and after giving the cord blood. Objectives: - To test the safety and effectiveness of unlicensed cord blood units in people who need stem cell transplants. Eligibility: - Individuals who are scheduled to have a stem cell transplant. Design: Participants will be screened with a medical history and physical exam. Participants will receive the cord blood unit as part of their stem cell transplant procedure. The transplant will be performed according to the current standard of care for the procedure. After the transplant, participants will be monitored for up to 1 year. Any problems or side effects from the transplant will be treated as necessary. All outcomes will be reported to the National Cord Blood Program and to the Center for International Blood and Marrow Transplant.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:4+
Sex:All
500 Participants Needed
Background: - Cord blood transplants can treat cancers and other diseases in children and adults. The U.S. Food and Drug Administration (FDA) requires cord blood to be collected and stored under certain safety standards. However, most available cord blood units were collected before the FDA set these standards. These units may not meet FDA standards, but they do meet similar standards set and followed by the National Marrow Donor Program (NMDP). Cord blood units that do not meet the new FDA standards may be used for transplants only as part of a research study. Doctors want to allow people who need transplants to receive cord blood that meets NMDP standards but may not meet FDA standards. Objectives: - To allow selected cord blood units that do not meet current FDA standards to be used for transplant. Eligibility: - Individuals who need cord blood units for transplant, and who best match cord blood units that are not FDA-licensed. Design: Participants will provide consent to receive cord blood that meets NMDP standards but may not meet FDA standards. Participants will remain on the study for observation for up to 1 year after transplant, or until they withdraw from the study for personal or medical reasons....
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:4 - 99
Sex:All
500 Participants Needed
Background: DNA is a structure in the body. It contains data about how the body develops and works. Telomeres are found on the end of chromosomes in DNA. Some people with short telomeres or other gene changes can develop diseases of the bone marrow, lung, and liver. Researchers want to see if low doses of the hormone drug danazol can help. Objective: To study the safety and effect of low dose danazol. Eligibility: People ages 3 and older with a telomere disease who have either very short telomeres and a specific gene change. They must also show signs of aplastic anemia, lung, or liver disease. Design: Participants will be screened in another protocol. Participants will have: * Medical history * Physical exam * Blood tests * Lung exam. They will breathe into an instrument that records the amount and rate of air breathed in and out over a period of time. 6-minute walking test. * Abdominal ultrasound and liver scan. These tests use sound waves to measure the fibrosis in the liver. Some participants will have: * Pregnancy test * Small sample of the liver removed * Bone marrow biopsy. The bone will be numbed and a small needle will take a sample of the marrow. All participants will have hormone levels checked. All child participants will see a pediatric endocrinologist. Children may need to have a hand x-ray. We will monitor patients for 6 months before starting danazol. Participants will take danazol by mouth twice a day for 1 year. Participants must return to the clinic at 6 months and 12 months while on danazol and 6 months after stopping it. They will have blood and urine tests, a lung exam, abdominal ultrasound, and liver scan.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:3 - 99
Sex:All
40 Participants Needed
Background: Myelodysplastic syndrome (MDS) and myelodysplastic/myeloproliferative neoplasm (MDS/MPN) are blood disorders that can cause serious complications in children and adults. MDS and MDS/MPN can also progress to acute myeloid leukemia. Treatments for these disorders are risky and not always effective. Better treatments are needed. Objective: To test a study drug (pacritinib) in adults and children with MDS or MDS/MPN. Eligibility: Children (aged 12 to 17 years) and adults (aged 18 years and older) with MDS or MDS/MPN. Design: Participants will be screened. They will have a physical exam with blood tests. They will have tests of their heart function. They may have a bone marrow biopsy: An area over the hip will be numbed; a needle will be inserted to remove a sample of soft tissue from inside the hipbone. Pacritinib is a capsule taken by mouth. All participants will take the study drug 2 times a day, every day, in 28-day cycles. They will write down the date and time they take each capsule. Doctors will assign varying dosages of the drug to different participants. Participants will have clinic visits each week during cycle 1; every 2 weeks during cycle 2; and gradually increasing to every 3 months after cycle 13. Treatment will continue for up to 8 years. Bone marrow biopsies, heart tests, and other tests will be repeated at intervals throughout the study. Participants will also fill out questionnaires about their quality of life, the symptoms of their disease, and other topics.
No Placebo Group
Trial Details
Trial Status:Not Yet Recruiting
Trial Phase:Phase 1, 2
Age:12+
Sex:All
160 Participants Needed
Image of trial facility.

Gene Modified T-cells for Blood Disorders

Washington, District of Columbia
This study will evaluate pediatric patients with malignant or non-malignant blood cell disorders who are having a blood stem cell transplant depleted of T cell receptor (TCR) alfa and beta cells that comes from a partially matched family donor. The study will assess whether immune cells, called T cells, from the family donor, that are specially grown in the laboratory and given back to the patient along with the stem cell transplant can help the immune system recover faster after transplant. As a safety measure these T cells have been programmed with a self-destruct switch so that they can be destroyed if they start to react against tissues (graft versus host disease).
No Placebo Group
Trial Details
Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2
Age:1 - 26
Sex:All
120 Participants Needed
BMT CTN 2207 will investigate the use of marrow transplantation for treatment of severe aplastic anemia that has not previously been treated.
No Placebo Group
Trial Details
Trial Status:Not Yet Recruiting
Trial Phase:Phase 2
Age:3 - 75
Sex:All
60 Participants Needed
This research is being done to investigate the safety and effectiveness of Darzalex Faspro (daratumumab and hyaluronidase-fihj) (a monoclonal antibody that targets plasma cells that make antibodies) and whether it can lower donor specific antibodies (DSA) levels to low enough levels to permit patients to proceed with allogeneic peripheral blood transplant (alloBMT). Those being asked to participate have high DSA levels that puts those being asked to participate at high risk of rejecting the available donor's blood stem cells and making those being asked to participate ineligible to receive a stem cell transplant.
No Placebo Group
Prior Safety Data
Trial Details
Trial Status:Recruiting
Trial Phase:Early Phase 1
Age:18+
Sex:All
8 Participants Needed
This trial uses stem cells from a baby's umbilical cord to treat patients who need new healthy stem cells. Patients first get strong medicine to clear out unhealthy cells, then receive the new stem cells, and take medications to prevent complications. Umbilical cord blood has been used in the treatment of various diseases, including leukemias, lymphomas, and immune system disorders.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1
Age:2 - 75
Sex:All
30 Participants Needed
The investigators will conduct a pilot feasibility and efficacy trial of a newly developed family health communication tool (called Let's Get REAL) in increasing youth involvement in real-time stem cell transplant and cellular therapy decisions (SCTCT). The investigators will pilot the intervention among 24 youth and their parents, stratified by youth age (stratum 1, 8-12 years of age and stratum 2, 13-17 years of age).
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Unphased
Age:8+
Sex:All
60 Participants Needed
This is a single arm pilot study using TCR alpha/beta+ T cell-depleted peripheral blood stem cells (PBSC) from closely matched unrelated donors or partially matched/haploidentical related donors for hematopoietic stem cell transplant (HSCT) in patients with acquired and inherited bone marrow failure (BMF) syndromes.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Unphased
Age:< 25
Sex:All
50 Participants Needed
The major morbidities of allogeneic hematopoietic stem cell transplant (HSCT) using donors that are not human leukocyte antigen (HLA) matched siblings are graft vs host disease (GVHD) and life- threatening infections. T cell receptor alpha beta (TCRαβ) T lymphocyte depletion and CD19+ B lymphocyte depletion of alternative donor hematopoietic stem cell (HSC) grafts is effective in preventing GVHD, but immune reconstitution may be delayed, increasing the risk of infections. The central hypothesis of this study is that an addback of CD45RO memory T lymphocytes, derived from a fraction of the original donor peripheral stem cell product depleted of CD45RA naïve T lymphocytes, will accelerate immune reconstitution and help decrease the risk of infections in TCRab/CD19 depleted PSCT.
No Placebo Group
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 1, 2
Age:1 - 25
Sex:All
100 Participants Needed
This will be a randomized, placebo-controlled trial with a 2x2 factorial design testing the effects of an NAD+ precursor (NR) and exercise on skeletal muscle quality and VO2max in AYA HCT survivors. The primary outcome is the change in muscle strength (isometric knee extension) from baseline to 16 weeks. Key secondary outcomes are the change in muscle strength (ankle plantarflexion) from baseline to 16 weeks, the change in grip strength from baseline to 16 weeks, the change in lower extremity muscle mass from baseline to 16 weeks, the change in muscle OXPHOS capacity from baseline to 16 weeks, and the change in aerobic capacity (VO2 max) from baseline to 16 weeks.
Trial Details
Trial Status:Recruiting
Trial Phase:Phase 2
Age:10 - 30
Sex:All
80 Participants Needed
Page 1 of 2+

Frequently Asked Questions

How much do Aplastic Anemia clinical trials pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do Aplastic Anemia clinical trials work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across Aplastic Anemia trials 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length for Aplastic Anemia is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a Aplastic Anemia medical study ?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest Aplastic Anemia clinical trials ?

Most recently, we added Ruxolitinib for Aplastic Anemia, Pacritinib for Myelodysplastic Syndrome and CD45RA Depleted Stem Cell Addback for Leukemia to the Power online platform.