TAK-186 for Advanced Cancer
Recruiting in Palo Alto (17 mi)
+47 other locations
Age: 18+
Sex: Any
Travel: May Be Covered
Time Reimbursement: Varies
Trial Phase: Phase 1 & 2
Waitlist Available
Sponsor: Maverick Therapeutics, Inc
Must not be taking: Immune-suppressive drugs, Corticosteroids
Disqualifiers: Autoimmune disease, Cardiovascular disease, Infections, others
No Placebo Group
Trial Summary
What is the purpose of this trial?This trial is testing a new drug called TAK-186 to see if it is safe and effective for adults with advanced cancers that cannot be removed by surgery. The drug works by targeting a specific protein on cancer cells to help stop their growth.
Will I have to stop taking my current medications?
The trial protocol does not specify if you must stop taking your current medications. However, certain treatments like cytotoxic chemotherapy, monoclonal antibodies, and some other therapies must be stopped within specific timeframes before starting the trial. It's best to discuss your current medications with the trial team to understand any specific requirements.
Is TAK-186 (also known as MVC-101 or EGFR x CD3 COBRA) safe for humans?
The research on treatments targeting EGFRvIII, a mutation found in some cancers, shows that these therapies can be effective without causing serious side effects in animal models. However, specific safety data for TAK-186 in humans is not provided in the available research.
12345Eligibility Criteria
Adults with advanced or metastatic cancer that can't be removed, who have a life expectancy of at least 12 weeks and measurable disease. They must be in relatively good health (ECOG ≤1), have acceptable blood test results, and provide informed consent. Specific types of cancers like NSCLC, HNSCC, and CRC are included if they've progressed after standard treatments.Inclusion Criteria
Life expectancy ≥ 12 weeks
Archival Tissue: Participants must allow acquisition of existing formalin-fixed paraffin-embedded (FFPE) archival tumor sample, either a block or unstained slides.
My cancer can be measured by scans and hasn't been treated with radiation in the area to be measured.
+7 more
Participant Groups
The trial is testing TAK-186 (MVC-101) for safety and effectiveness in treating various advanced cancers. Participants will receive the treatment for up to 13 months with follow-ups at specified intervals to monitor their response.
2Treatment groups
Experimental Treatment
Group I: Dose Escalation PhaseExperimental Treatment1 Intervention
TAK-186 initial 60 minutes infusion and 30 minutes subsequent infusions on Day 1 of every week in Dose Escalation Phase. Participants may receive additional treatment with TAK-186. Dose escalation will be carried out in sequential cohorts of escalating doses.
Group II: Cohort Expansion Phase: NSCLCExperimental Treatment1 Intervention
Participants with non-small cell lung cancer (NSCLC) will be randomized to receive low dose or high dose of RDE of TAK-186 infusion on Day 1 of every week during Dose Expansion Phase of the study. Participants may receive additional treatment with TAK-186. Based on the results for this cohort additional cohorts for HNSCC and CRC, may be enrolled.
Find a Clinic Near You
Research Locations NearbySelect from list below to view details:
Mary Crowley Cancer ResearchDallas, TX
Sanford UniversitySioux Falls, SD
University of YaleNew Haven, CT
University of MinnesotaMinneapolis, MN
More Trial Locations
Loading ...
Who Is Running the Clinical Trial?
Maverick Therapeutics, IncLead Sponsor
TakedaLead Sponsor
References
Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. [2022]No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application.
Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy. [2020]Lung cancer is the most common incident cancer and the leading cause of cancer death. In recent years, the development of tumor immunotherapy especially chimeric antigen receptor T (CAR-T) cell has shown a promising future. Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation expressed in various types of tumors and has been detected in non-small cell lung cancer with a mutation rate of 10%. Thus, EGFRvIII is a potential antigen for targeted lung cancer therapy. In this study, CAR vectors were constructed and transfected into virus-packaging cells. Then, activated T cells were infected with retrovirus harvested from stable virus-producing single clone cell lines. CAR expression on the surfaces of the T cells was detected by flow cytometry and Western blot. The function of CAR-T targeting EGFRvIII was then evaluated. The EGFRvIII-CAR vector was successfully constructed and confirmed by DNA sequencing. A stable virus-producing cell line was produced from a single clone by limited dilution. The culture conditions for the cell line, including cell density, temperature, and culture medium were optimized. After infection with retrovirus, CAR was expressed on more than 90% of the T cells. The proliferation of CAR-T cells were induced by cytokine and specific antigen in vitro. More importantly, EGFRvIII-CART specifically and efficiently recognized and killed A549-EGFRvIII cells with an effector/target ratio of 10:1 by expressing and releasing cytokines, including perforin, granzyme B, IFN-γ, and TNF-α. The in vivo study indicated that the metastasis of A549-EGFRvIII cells in mice were inhibited by EGFRvIII-CART cells, and the survival of the mice was significantly prolonged with no serious side effects. EGFRvIII-CART showed significantly efficient antitumor activity against lung cancer cells expressing EGFRvIII in vivo and in vitro. Therefore, CAR-T targeting EGFRvIII is a potential therapeutic strategy in preventing recurrence and metastasis of lung cancer after surgery.
Selective Targeting of Glioblastoma with EGFRvIII/EGFR Bitargeted Chimeric Antigen Receptor T Cell. [2019]The heterogeneous expression of EGFRvIII [variant III mutant of epidermal growth factor receptor (EGFR)] in glioblastoma has significant impact on the clinical response to the treatment of EGFRvIII-specific chimeric antigen receptor-engineered T (CAR T) cells. We hypothesized that CAR T cells that could target both EGFRvIII and the form of EGFR expressed on tumor cells, but not EGFR on normal cells, would greatly improve efficacy without inducing on-target, off-tumor toxicity. Therefore, we developed a humanized single-chain antibody, M27, with a single specificity that binds to an epitope found both on wild-type EGFR- and EGFRvIII-overexpressing tumor cells, but not EGFR-expressing normal cells, including primary keratinocytes, on which wild-type EGFR is highly expressed. M27-derived CAR T cells effectively lysed EGFRvIII- or EGFR-overexpressing tumor cells, but showed no observable toxicity on normal cells. Inclusion of the CD137 (4-1BB) costimulatory intracellular domain in the M27-28BBZ CAR provided CAR T cells with higher tumor lysis activity than when not included (as in the M27-28Z CAR). The growth of established EGFR- or EGFRvIII-overexpressing glioma xenografts was suppressed by M27-28BBZ CAR T cells as well. The growth of heterogeneic xenograft tumors, created by mixing EGFR- and EGFR-overexpressing glioblastoma cells, was also effectively inhibited by M27-28BBZ CAR T cells. The survival of mice in the orthotopic models was significantly prolonged after M27-28BBZ CAR T-cell infusion. These results suggested that tumor-selective, bitargeted anti-EGFR/EGFRvIII CAR T cells may be a promising modality for the treatment of patients with EGFR/EGFRvIII-overexpressing glioblastoma. Cancer Immunol Res; 6(11); 1314-26. ©2018 AACR.
The EGFR variant III mutant as a target for immunotherapy of glioblastoma multiforme. [2023]In epithelial tumors, the epidermal growth factor receptor (EGFR) controls key signaling pathways responsible for growth, proliferation, migration, and survival of tumor cells. The epidermal growth factor receptor variant III (EGFRvIII) is the most common EGFR mutation that occurs in up to 30% of high-grade gliomas especially glioblastoma multiforme (GBM). EGFRvIII arises from the deletion of exon 2-7 that leads to the formation of the constitutively activated mutant receptor incapable of binding any known ligand. EGFRvIII-expressing cells are resistant to EGFR inhibitors and therefore take advantage in survival. Furthermore, EGFRvIII expression in tumors is often correlates with poor prognosis. Indeed, EGFRvIII targeting is of great therapeutic value in order to inhibit GBM progression and invasion. The presence of the unique glycine site in EGFRvIII provides an option to develop EGFRvIII-specific monoclonal antibodies (MAbs). These antibodies are used for detection of EGFRvIII and immunotherapy. Peptide CDX-110 derived from EGFRvIII has high immunogenicity. This peptide was used for the development of anti-EGFRvIII MAbs with improved specificity to the mutant receptor, EGFRvIII-specific dendritic cell vaccine, and CDX-110-KLH peptide vaccine. These immune reagents were successfully tested in preclinical and clinical studies for GBM treatment.
Vγ2 x PD-L1, a Bispecific Antibody Targeting Both the Vγ2 TCR and PD-L1, Improves the Anti-Tumor Response of Vγ2Vδ2 T Cell. [2022]The potent cytotoxic property of Vγ2Vδ2 T cells makes them attractive for adoptive T cell transfer therapy. The transfusing of the expanded Vγ2Vδ2 T cells into cancer patients shows well-tolerated, but the clinical response rates are required to be improved, implying that there is still an unmet efficacy with low toxicity for this novel anti-tumor therapy. In this study, we test the anti-tumor efficacy of a Y-body-based bispecific antibody (bsAb) Vγ2 x PD-L1 that preferentially redirects Vγ2Vδ2 T cells to combat PD-L1 positive tumor cells. With nanomolar affinity levels to Vγ2Vδ2 T cells and PD-L1+ tumor cells, Vγ2 x PD-L1 bridges a Vγ2Vδ2 T cell with a SKOV3 tumor cell to form a cell-to-cell conjugation. In a PD-L1-dependent manner, the bsAb elicits effective activation (CD25+CD69+), IFNγ releasing, degranulation (CD107a+), and cytokine production (IFNγ+ and TNFα+) of expanded Vγ2Vδ2 T cells. The activations of the Vγ2Vδ2 T cells eliminate PD-L1-expressing human cancer cell lines, including H1975, SKOV3, A375, H1299, and H2228 cells, but not PD-L1 negative cells including HEK-293 (293) cells and healthy PBMCs. Finally, we show that combining Vγ2 x PD-L1 with adoptively transferring Vγ2Vδ2 T cells inhibits the growth of existing tumor xenografts and increases the number of Vγ2Vδ2 T cells into the tumor bed. Vγ2 x PD-L1 represents a promising reagent for increasing the efficacy of adoptively transferred Vγ2Vδ2 T cells in the treatment of PD-L1 positive malignant tumors.
A bivalent recombinant immunotoxin with high potency against tumors with EGFR and EGFRvIII expression. [2023]EGFR and EGFRvIII are overexpressed in various types of cancer, serving as optimal targets for cancer therapy. Capitalizing on the high specificity of humanized antibody 806 (mAb806) to the EGFR and EGFRvIII overexpressed in cancer, we designed and generated a bivalent recombinant immunotoxin (RIT, DT390-BiscFv806) by fusing the mAb806-derived bivalent single-chain variable fragment with a diphtheria toxin fragment, DT390. In vitro, DT390-BiscFv806 efficiently internalized into the cells and exhibited high cytotoxicity against the U87 glioblastoma cells and the EGFRvIII-transfected U87 (U87-EGFRvIII) cells with a half maximal inhibition concentration (IC50) of 1.47 nM and 2.26 × 10(-4) nM, respectively. Notably, DT390-BiscFv806 was 4 orders of magnitude more potent against the U87-EGFRvIII cells than against the parent U87 cells. The cytotoxicity against a group of 6 head and neck squamous cell carcinoma cell lines were further analyzed, showing an IC50 ranging from 0.24 nM to 156 nM, depending on the expression level of EGFR/EGFRvIII. In animals, the U87-EGFRvIII tumor xenografts grew extremely faster than the parental U87, and systemic administration of DT390-BiscFv806 significantly inhibited the growth of established U87-EGFRvIII and U87 tumor xenografts, showing a growth inhibition rate of 76.3% (59.82-96.2%) and 59.4% (31.5-76.0%), respectively. In pathology, the RIT-treated tumors exhibited a low mitotic activity and a large number of degenerative tumor cells, compared with the control tumors. The results indicate that DT390-BiscFv806 is promising for treatment of various types of cancer, especially for those with high EGFR expression or with EGFR and EGFRvIII co-expression.
Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. [2018]A mutant epidermal growth factor receptor (variously called DeltaEGFR, de2-7 EGFR, or EGFRvIII) containing a deletion of 267 amino acids of the extracellular domain is frequently highly expressed in human malignant gliomas and has been reported for cancers of the lung, breast, and prostate. We tested the efficacy of a novel monoclonal anti-DeltaEGFR antibody, mAb 806, on the growth of intracranial xenografted gliomas in nude mice. Systemic treatment with mAb 806 significantly reduced the volume of tumors and increased the survival of mice bearing xenografts of U87 MG.DeltaEGFR, LN-Z308.DeltaEGFR, or A1207.DeltaEGFR gliomas, each of which expresses high levels of DeltaEGFR. In contrast, mAb 806 treatment was ineffective with mice bearing the parental U87 MG tumors, which expressed low levels of endogenous wild-type EGFR, or U87 MG.DK tumors, which expressed high levels of kinase-deficient DeltaEGFR. A slight increase of survival of mice xenografted with a wild-type EGFR-overexpressing U87 MG glioma (U87 MG.wtEGFR) was effected by mAb 806 concordant with its weak cross-reactivity with such cells. Treatment of U87 MG.DeltaEGFR tumors in mice with mAb 806 caused decreases in both tumor growth and angiogenesis, as well as increased apoptosis. Mechanistically, in vivo mAb 806 treatment resulted in reduced phosphorylation of the constitutively active DeltaEGFR and caused down-regulated expression of the apoptotic protector, Bcl-XL. These data provide preclinical evidence that mAb 806 treatment may be a useful biotherapeutic agent for those aggressive gliomas that express DeltaEGFR.
Radioimmunoscintigraphy of intracranial glioma xenograft with a technetium-99m-labeled mouse monoclonal antibody specifically recognizing type III mutant epidermal growth factor receptor. [2019]The type III mutant epidermal growth factor receptor (EGFR) is expressed on the cell surface of a subset of glioma, but not of normal tissues. In this study, we investigated the in vivo kinetics of 3C10 mouse monoclonal antibody (mAb), specifically recognizing the type III mutant EGFR (EGFRvIII), using athymic nude mice bearing the intracranial glioma xenograft overexpressing the EGFRvIII. Human glioma cell line, U87MG, expressing the wild type EGFR and the transfectant, named U87MG x deltaEGFR, expressing the EGFRvIII, were transplanted subcutaneously or intracranially to nude mice. 3C10 mAb labeled with a technetium-99m (99mTc) was intravenously injected into these nude mice and then the mice were sacrificed at 24 h later, and the 99mTc-uptake by xenografts and major normal organs was measured to determine the biodistribution of mAb. Furthermore, at 3, 6 and 24 h after injection of 99mTc-labeled 3C10 mAb, whole-body scintigraphy was obtained with a gamma camera to localize the tumor site. 3C10 mAb significantly accumulated to U87MG x deltaEGFR xenografts transplanted subcutaneously or intracranially in nude mice, showing high tumor-to-blood ratio of 10.30 and 4.01, respectively. In contrast, uptake of control antibody in the intracranial tumor was as low as 0.43. In scintigrams, intracranially transplanted U87MG x deltaEGFR xenografts were detectable at 3 h after injection of 99mTc-labeled 3C10 mAb. These results suggest that intravenously injected 3C10 mAb specifically accumulated to the subcutaneous or intracranial glioma xenograft expressing the EGFRvIII and 3C10 mAb is a potential diagnostic and therapeutic agent for patients with gliomas expressing the EGFRvIII.